A Bayesian Model to Assess T_2 Values and Their Changes Over Time in Quantitative MRI

نویسندگان

  • Benoît Combès
  • Anne Kerbrat
  • Olivier Commowick
  • Christian Barillot
چکیده

Quantifying T2 and T ∗ 2 relaxation times from MRI becomes a standard tool to assess modifications of biological tissues over time or differences between populations. However, due to the relationship between the relaxation time and the associated MR signals such an analysis is subject to error. In this work, we provide a Bayesian analysis of this relationship. More specifically, we build posterior distributions relating the raw (spin or gradient echo) acquisitions and the relaxation time and its modifications over acquisitions. Such an analysis has three main merits. First, it allows to build hierarchical models including prior information and regularisations over voxels. Second, it provides many estimators of the parameters distribution including the mean and the α-credible intervals. Finally, as credible intervals are available, testing properly whether the relaxation time (or its modification) lies within a certain range with a given credible level is simple. We show the interest of this approach on synthetic datasets and on two real applications in multiple sclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian approach for image denoising in MRI

Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...

متن کامل

کاربرد مدل کلاس پنهان بیز در تعیین ارزش تشخیصی SPECT و MRI مغز جهت تشخیص حس بویایی بعد از تروما بدون حضور استاندارد طلایی

Abstract Introduction: The sense of smell gives unexplainable quality to human life. The  impairment In this sense will create lot of problems. MRI and SPECT are two way of olfactory evaluation that none of the both is not Gold standard. Bayesian latent class model is the correct way to determine the diagnostic value of these tests. Methods: MRI and SPECT tests performed on 63 patients e...

متن کامل

Non-invasive quantification of liver fat content by different Gradient Echo MRI sequences in patients with Non-Alcoholic Fatty Liver Disease (NAFLD)

Introduction: Non-invasive quantification of liver fat by Gradient echo (GRE) Technique is an interesting issue in quantitative MRI. Despite the numerous advantages of this technique, fat measurement maybe biased by confounding and effects. The aim of this study was to evaluate the GRE pulse sequences with different   and  weighting for liver fat quantification in patients with...

متن کامل

Comparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei

Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...

متن کامل

Investigating Lexico-grammaticality in Academic Abstracts and Their Full Research Papers from a Diachronic Perspective

Development of science and academic knowledge has led to changes in academic language and transfer of information and knowledge. In this regard, the present study is an attempt to investigate lexico-grammaticality in academic abstracts and their full research papers in Linguistics, Chemistry and Electrical engineering papers published during 1991-2015 in academic journals from a diachronic pers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016